TECHNICAL MEMO

QA:N/A

Title:

Rail Accident Rate Calculation Methodology

From:

Lisa Bendixen, Cristiano Facanha

ICF International

To:

Mike West

Potomac-Hudson Engineering

Date Created: 03/30/07

2

22

1

- The accident rates used in Sections 4.2.10.2.3.1.2 and 4.2.10.2.3.2.2 (Occupational and Public Health
- 4 Safety) are based on FRA's accident data (http://safetydata.fra.dot.gov/officeofsafety/) from the period
- between January 1, 1995 to September 30, 1999, as they are extracted from a detailed analysis done in
- 6 early 2000. Accident rates have been holding steady in recent years (DIRS 178016-DOT 2005), so this
- 7 time period is still considered representative.
- 8 Accidents involving freight trains on main line tracks were selected, providing a dataset of 3,185 trains in
- 9 accidents on Class I railroads. Accidents on non-Class I railroads were excluded from the analysis. The
- definition of freight trains in main line accidents excludes accidents to passenger trains, work trains, on-
- track maintenance and inspection equipment, light locomotives and cuts of cars, as well as accidents on
- 12 yard sidings and industry tracks. Grade crossing collisions reported as train accidents are included. These
- 13 accidents were broken down by cause-code and each cause group was defined as car-mile or train-mile
- related, depending on whether accident likelihood was considered to be a function of the total car-miles
- or train-miles operated.
- 16 The other piece of information needed to calculate accident rates is exposure to accidents in terms of
- 17 freight train- and car-miles operated over the 4.75-year period from January 1, 1995 to September 30,
- 18 1999. For Class I railroads, this information was obtained from industry statistics published by the AAR
- 19 (AAR, "Analysis of Class I Railroads" and AAR, "Railroad Ten Year Trends," periodical publications
- 20 providing railroad traffic data) up to 1997 and estimated for 1998 and 1999 from railroad traffic data
- 21 published in the railroad trade press.

Table 1. Estimated Aggregate Car- and Train-miles (January 1, 1995 – September 30, 1999)

Year	Freight Train-Miles (millions)	Freight Car-Miles (billions)
1995	458	30.38
1996	469	31.72
1997	475	31.66
1998	480 (E)	32.01 (E)
1999 (9 months)	375 (E)	25.14 (E)
Total, Class I	2,257	150.90

E: estimated

Train and car-miles were distributed among FRA track classes based on a survey performed for the risk

model that was subsequently used in the CN/IC EIS (DIRS 174623-STB 1998), focusing on track class 3

for this study. Higher classes have lower accident rates and using track class 3 is therefore conservative if the track is actually rated as class 4 or 5.

Table 2. Distribution of Traffic by Track Class (Class I Railroads)

				()		
FRA Track Class	X/1	2	3	4	5 and 6	Total
Percent Car-miles	0.30	3.20	11.60	63.10	21.90	100
Percent Train-miles	0.30	3.30	12.10	61.80	22.60	100
Billion Car-miles	0.45	4.83	17.51	95.22	33.05	150.90
Million Train-miles	6.8	74.5	273.1	1394.8	510.1	2,257

As previously mentioned, train accidents were divided into two categories: those considered to be correlated with train-miles and those correlated with car-miles. The counts of trains in accidents were summed and divided by the total exposure value. This calculation was done separately for the two groups, yielding train and car-mile accident rates by track class for Class I railroads. The resulting values are shown below for track class 3.

Table 3. Train Accident Rates for Track Class 3

		FRA Track Class 3	Fraction with Cars Derailed	
Train-mile (per million train-miles)	Derailments	0.51	0.93	
	Collisions	0.19	0.57	
	Other	0.51	0.15	
	TOTAL	1.21	0.54 (weighted average)	
Car-mile (per billion car-miles)	Derailments	25.8	0.98	
	Collisions	0.51	0.44	
	Other	0.74	0.17	
	TOTAL	27.05	0.95 (weighted average)	

14 This gives the rates used in this study, 1.2 x 10⁻⁶/train-mile (7.5 x 10⁻⁷/train-km) and 2.7 x 10⁻⁸/car-mile
15 (1.7 x 10⁻⁸/car-km). These rates were then combined for an 8-car train by the following formula, resulting
16 in 8.9 x 10⁻⁷ accidents per 8-car train-km:

Combined Rate = Train-km Rate + 8 x Car-km Rate (accidents/8-car train-km) (accidents/train-km) (accidents/car-km)

13

1 2

3

4

5

6

7

8

9

10

11

12

YUCCA MOUNTAIN RAIL ALIGNMENT EIS

- 1 Virtually all car-mile related accidents result in a derailment of one or more cars (95%), while for train-
- 2 mile related accidents the fraction is a bit more than 50%. If there is a derailment, there are usually
- 3 multiple cars involved, with the number varying by train length. For the purpose of this analysis, it was
- 4 conservatively assumed that an SNF/HLW car would be involved in each accident.

5